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Abstract 

Jungck [10] introduced the concept of the more 

generalized commutativity, so called 

compatibility, which is more general than that of 

weak commutativity. By employing compatible 

mappings, we prove the following common fixed 

point theorem for three pairs of compatible 

mappings with the generalized contractive 

mappings in cone metric spaces. Our result 

extends the result of Jang et al. [7], Cho-Yoo [3] 

etc. in cone metric spaces. 
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1 INTRODUCTION: 

Huang and Zhang [6] generalized the concept of a 

cone metric space, re-placing the set of real 

numbers by an ordered Banach space and obtained 

some common fixed point  theorems for mappings 

satisfying different contractive conditions over 

cone metric space. Subsequently, Abbas and 

Jungck [1] and Abbas and Rhoades[2] studied 

common fixed point theorems in cone metric 

spaces. Moreover, Huang and Zhang [5], Abbas 

and Jungck[1], IIlic and Rakocevic [6] proved 

their results for normal cones. Jungck [10] 

generalized the concept of weak commuting by 

defining the term compatible mappings and 

proved that the weakly commuting mappings are 

compatible but the converse is not true. In recent 

years, several authors have obtained coincidence 

point results for various classes of mappings on a 

cone metric space utilizing these concepts. In this 

paper, we prove some common fixed point 

theorems for six mappings involving Ciric’s type 

contractive condition in complete cone metric 

spaces. Our work generalizes some earlier results 

of Nesic [14], Jeong and Rhoades [8], Jang et al. 

[7],kang and Kim[13] and others. Some examples 

are also furnished to demonstrate the validity of 

the hypothesis. 

 

2  BASIC DEFINITIONS: 

The following definitions are in literature of 

Huang and Zhang [5]. 

 

Definition 2.1: Let 𝐸 be a real Banach space and 

𝑃 be a subset of 𝐸. The subset 𝑃 is called a cone if 

and only if 

(a) 𝑃 is closed, non-empty and 𝑃 ≠ {0} 

(b) 𝑎, 𝑏 ∈ 𝑅, 𝑎, 𝑏 ≥ 0, 𝑥, 𝑦 ∈ 𝑃 implies  

 𝑎𝑥 + 𝑏𝑦 ∈ 𝑃 

(c) 𝑥 ∈ 𝑃 and  −𝑥 ∈ 𝑃 ⇒ 𝑥 = 0 

 i.e 𝑃 ∩ (−𝑃) = {0} 

 

Definition 2.2: Let 𝑃 be a cone in a Banach space 

𝐸 i.e. given a cone 𝑃 ⊂ 𝐸, define partial ordering 

‘≤’ with respect to 𝑃 by 𝑥 ≤ 𝑦 if and only if 𝑦 −
𝑥 ∈ 𝑃. We shall write 𝑥 < 𝑦 to indicate 𝑥 ≤ 𝑦 but 

𝑥 ≠ 𝑦while 𝑥 ≪ 𝑦 will stand for 𝑦 − 𝑥 ∈ 𝐼𝑛𝑡 𝑃, 

where 𝐼𝑛𝑡 𝑃 denote the interior of the set 𝑃. This 

cone 𝑃 is called an order cone. 

 

Definition 2.3: Let 𝐸 be a real Banach space and 

𝑃 ⊂ 𝐸 be an order cone. The cone 𝑃 is called 

normal if there is a number 𝐾 > 0 such that for all 

𝑥, 𝑦 ∈ 𝐸, 

 0 ≤ 𝑥 ≤ 𝑦 implies ‖𝑥‖ ≤ 𝐾‖𝑦‖ 

The least positive number 𝐾 satisfying the above 

inequality is called the normal constant of 𝑃. 
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Definition 2.4: Let 𝑋 be a non-empty and 𝐸 be a 

real Banach space. Suppose that the mapping 

𝑑: 𝑋 × 𝑋 → 𝐸satisfies 

(d1) 0 ≤ 𝑑(𝑥, 𝑦) for all 𝑥, 𝑦 ∈ 𝑋 and 𝑑(𝑥, 𝑦) = 0 

if and only if 𝑥 = 𝑦 

(d2) 𝑑(𝑥, 𝑦) = 𝑑(𝑦, 𝑥) for all 𝑥, 𝑦 ∈ 𝑋 

(d3) 𝑑(𝑥, 𝑦) ≤ 𝑑(𝑥, 𝑧) + 𝑑(𝑧, 𝑦) for all 𝑥, 𝑦, 𝑧 ∈ 𝑋 

 

Then 𝑑 is called a cone metric on 𝑋 and (𝑋, 𝑑) is 

called a cone metric space. 

It is obvious that cone metric spaces generalize 

metric spaces because each metric space is a cone 

metric space with 𝐸 = 𝑅 and 𝑃 = [0, +∞[ 
 

Example 2.5: (a) Let 𝐸 = 𝑅2, 𝑃 = {(𝑥, 𝑦) ∈
𝐸 |𝑥, 𝑦 ≥ 0} ⊂ 𝑅2, 𝑋 = 𝑅 and 𝑑: 𝑋 × 𝑋 → 𝐸 such 

that 

𝑑(𝑥, 𝑦) = (|𝑥 − 𝑦|, 𝛼|𝑥 − 𝑦|), where 𝛼 ≥ 0 is a 

constant.  

Then (𝑋, 𝑑) is a cone metric space. 

(b) Let 𝐸 = 𝑅𝑛 with 𝑃 = {(𝑥𝑖, … , 𝑥𝑛): 𝑥𝑖 ≥
0, ∀𝑖 = 1,2, … , 𝑛}𝑋 = 𝑅 and 𝑑: 𝑋 × 𝑋 → 𝐸 such 

that  

𝑑(𝑥, 𝑦) = (|𝑥 − 𝑦|, 𝛼𝑖|𝑥 − 𝑦|, … , 𝛼𝑛−1|𝑥 − 𝑦|) 

where 𝛼𝑖 ≥ 0 for all 1 ≤ 𝑖 ≤ 𝑛 − 1. Then(𝑋, 𝑑) is 

a cone metric space. 

 

Definition 2.6: Let (𝑋, 𝑑) be a cone metric space. 

Let {𝑥𝑛} be a sequence in 𝑋 and 𝑥 ∈ 𝑋. We say 

that {𝑥𝑛}is a 

(a) convergent sequence or {𝑥𝑛} converges to 𝑥 if 

for every 𝑐 in 𝐸 with 𝑐 ≫ 0, there is an 𝑛0 ∈ 𝑁 

such that for all 𝑛 > 𝑛0, 𝑑(𝑥𝑛, 𝑥) ≪ 𝑐 for 

some fixed point 𝑥 in 𝑋where 𝑥 is that limit of 

{𝑥𝑛}. This is denoted by lim
𝑛→∞

𝑥𝑛 = 𝑥 or 𝑥𝑛 →

𝑥, 𝑛 → ∞. Completeness is defined in the 

standard way. 

 

It was proved in [4] if (𝑋, 𝑑) be a cone metric 

space, 𝑃 be a normal cone with normal constant 𝐾 

and {𝑥𝑛} converges to 𝑥 if and only if 𝑑(𝑥𝑛, 𝑥) →
0 as 𝑛 → ∞. 

(b) Cauchy sequence if for 𝑐 in 𝐸 with 𝑐 ≫ 0, 

there is an 𝑛0 ∈ 𝑁 such that for all 𝑛, 𝑚 > 𝑛0, 

𝑑(𝑥𝑛, 𝑥𝑚) ≪ 𝑐. 

 

It was proved in [4] if (𝑋, 𝑑) be a cone metric 

space, 𝑃 be a normal cone with normal constant 𝐾 

and {𝑥𝑛} be a sequence in 𝑋, then {𝑥𝑛} is a 

Cauchy sequnence  if and only if 𝑑(𝑥𝑛, 𝑥𝑚) → 0 

as 𝑛, 𝑚 → ∞. 

 

Definition 2.7: A cone metric space 𝑋 is said to 

be complete if every Cauchy sequence in 𝑋 is 

convergent in 𝑋. It is known that {𝑥𝑛} converges 

to 𝑥 ∈ 𝑋 if and only if 𝑑(𝑥𝑛, 𝑥) → 0 as 𝑛 → ∞. 

The limit of a convergent sequence in unique 

provided 𝑃 is a normal cone with normal constant 

𝐾. 

 

In recent years several definitions of conditions 

weaker than commutativity have appeared which 

facilitated significantly to extend the Jungck’s 

theorem and several others. Foremost among of 

them is perhaps the weak commutativity condition 

introduced by Sessa [15] which can be described 

as follows: 

 

Definition 2.8: Let 𝑆 and 𝑇 be mappings from a 

cone metric space (𝑋, 𝑑) into itself. Then 𝑆 and 𝑇 

are said to be weakly commuting mappings on 𝑋 

if  

𝑑(𝑆𝑇𝑥, 𝑇𝑆𝑥) ≤ 𝑑(𝑆𝑥, 𝑇𝑥), for all 𝑥 ∈ 𝑋. 

obviously a commuting pair is weakly commuting 

but its converse need not be true as is evident from 

the following example. 

 

Example 2.9: Consider the set 𝑋 = [0,1] with the 

usual metric defined by  

 𝑑(𝑥, 𝑦) = |𝑥 − 𝑦| = ‖𝑥 − 𝑦‖ 

Define 𝑆 and 𝑇: 𝑋 → 𝑋 by  

 𝑆𝑥 =
𝑥

3−2𝑥
 and 𝑇𝑥 =

𝑥

3
 for all 𝑥 ∈ 𝑋. 

Then, we have to any 𝑥 in 𝑋 

 𝑆𝑇𝑥 =
𝑥

9−2𝑥
 and 𝑇𝑆𝑥 =

𝑥

9−6𝑥
 

Hence 𝑆𝑇 ≠ 𝑇𝑆. Thus, 𝑆 and 𝑇 do not commute. 

Again,  𝑑(𝑆𝑇𝑥, 𝑇𝑆𝑥) = ‖
𝑥

9−2𝑥
−

𝑥

9−6𝑥
‖ 

  =
4𝑥2

(9−2𝑥)(9−6𝑥)
 

 ≤
2𝑥2

3(3−2𝑥)
=

𝑥

3−2𝑥
−

𝑥

3
 

 = 𝑑(𝑆𝑥, 𝑇𝑥) 

and thus 𝑆 and 𝑇 commute weakly. 

 

Example 2.10: Consider the set 𝑋 = [0,1] with 

the usual metric 𝑑(𝑥, 𝑦) = ‖𝑥 − 𝑦‖. Let 𝑆𝑥 =
𝑥

2
 

and 𝑇𝑥 =
𝑥

2+𝑥
 , for every 𝑥 ∈ 𝑋. Then, for all 𝑥 ∈

𝑋 

 𝑆𝑇𝑥 =
𝑥

4+2𝑥
 and 𝑇𝑆𝑥 =

𝑥

4+𝑥
 

Hence, 𝑆𝑇 ≠ 𝑇𝑆. Thus, 𝑆 and 𝑇 do not commute. 

Again,  𝑑(𝑆𝑇𝑥, 𝑇𝑆𝑥) = ‖
𝑥

4+2𝑥
−

𝑥

4+𝑥
‖ 

  =
𝑥2

(4+𝑥)(4+2𝑥)
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 ≤
𝑥2

4+2𝑥
=

𝑥

2
−

𝑥

2+𝑥
 

 = 𝑑(𝑆𝑥, 𝑇𝑥) 

 

and thus, 𝑆 and 𝑇 commute weakly. 

Obviously, the class of weakly commuting is 

wider and includes commuting mappings as 

subclass. 

 

Jungck [10] has observed that for X = R if Sx = x3 

and Tx = 2x3 then S and T are not weakly 

commuting. Thus it is desirable to a less 

restrictive concept which he termed as 

‘compatibility’ the class of compatible mappings 

is still wider and includes weakly commuting 

mappings as subclass as is evident from the 

following definition of Jungck [10]. 

 

Definition 2.11: Let 𝑆 and 𝑇 be self mappings on 

a cone metric space (𝑋, 𝑑). Then 𝑆 and 𝑇 are said 

to be compatible mappings on 𝑋 if 

lim
𝑛→∞

𝑑(𝑆𝑇𝑥𝑛, 𝑇𝑆𝑥𝑛) = 0 whenever {𝑥𝑛} is a 

sequence in 𝑋 such that 

lim
𝑛→∞

𝑆𝑥𝑛 = lim
𝑛→∞

𝑇𝑥𝑛 = 𝑡 for some point 𝑡 ∈ 𝑋. 

Obviously, any weakly commuting pair {𝑆, 𝑇}  is 

compatible, but the converse is not necessarily 

true, as in the following example. 

 

Example 2.12: Let Sx = x3 and Tx = 2x3 with X = 

R with the usual metric. Then S and T are 

compatible, since |𝑇𝑥 − 𝑆𝑥| = |𝑥3| → 0  if and 

only if  |𝑆𝑇𝑥 − 𝑇𝑆𝑥| = 6|𝑥9| → 0 But |𝑆𝑇𝑥 −
𝑇𝑆𝑥| ≤ |𝑇𝑥 − 𝑆𝑥| is not true for all Xx , say 

for example at x = 1. 

 

Definition 2.13: Let 𝑆 and 𝑇 be self maps of a set 

𝑋. If 𝑤 = 𝑆𝑥 = 𝑇𝑥 for some 𝑥 in 𝑋, then 𝑥 is 

called a coincidence point of 𝑆 and 𝑇 and 𝑤 is 

called a point of coincidence of 𝑆 and 𝑇. 

 

Remark 2.14: Let (𝑋, 𝑑) be a cone metric space 

with a cone 𝑃. If 𝑑(𝑥, 𝑦) ≤ ℎ𝑑(𝑥, 𝑦) for all 𝑥, 𝑦 ∈

𝑋, ℎ ∈ (0,1), then 𝑑(𝑥, 𝑦) = 0, which implies that 

𝑥 = 𝑦. 

3MAIN RESULTS 

Theorem 3.1:Let (𝑋, 𝑑) be a complete cone 

metric space and P be a normal cone with normal 

constant K. Let A, B, S, T, I and J be self 

mappings from a complete cone metric space 

(𝑋, 𝑑) into itself satisfying the following 

conditions: 

(i) 𝐴𝐵(𝑋) ⊂ 𝐽(𝑋),  𝑆𝑇(𝑋) ⊂ 𝐼(𝑋) … (1) 

(ii) 𝑑(𝐴𝐵𝑥, 𝑆𝑇𝑦)≤𝛽1 max{𝑑(𝐴𝐵𝑥, 𝐼𝑥) , 𝑑(𝑆𝑇𝑦, 𝐽𝑦), 

 
1

2
[𝑑(𝐴𝐵𝑥, 𝐽𝑦) + 𝑑(𝑆𝑇𝑦 , 𝐼𝑥)], 𝑑(𝐼𝑥, 𝐽𝑦)} 

 +𝛽2 max {𝑑(𝐴𝐵𝑥, 𝐼𝑥), 𝑑(𝑆𝑇𝑦, 𝐽𝑦)} 

 +𝛽3 max {𝑑(𝐴𝐵𝑥, 𝐽𝑦), 𝑑(𝑆𝑇𝑦, 𝐼𝑥)}  … (2) … (2) 

 

for all 𝑥, 𝑦 ∈ 𝑋 where 𝛽1, 𝛽2, 𝛽3 ≥ 0,  0 < 𝛽 =
𝛽1 + 𝛽2 + 2𝛽3 ≤ 1(𝛽1, 𝛽2, 𝛽3are non-negative 

real numbers) 

Suppose that 

(iii) One of AB, ST, I and J is continuous.

 …(3) 

(iv) The pairs (AB, I) and (ST,J) are compatible 

on X.  …(4) 

 

Then the mappings AB, ST, I and J have a unique 

common fixed point in X. 

Furthermore, if the pairs (A,B), (A,I), (B,I), (S,T), 

(S,J), (T,J) are commuting mappings then the 

mappings A, B, S, T, I and J have unique common 

fixed point. 

 

Proof: Let 𝑥0 ∈ 𝑋 be an arbitrary point. By (1), 

since 𝐴𝐵(𝑋) ⊂ 𝐽(𝑋), we can choose a point 𝑥1 in 

𝑋 such that 𝐴𝐵𝑥0 = 𝐽𝑥1.   Also, since 𝑆𝑇(𝑋) ⊂
𝐼(𝑋), we can fixed a point 𝑥2 with 𝑆𝑇𝑥1 = 𝐼𝑥2 

and so on. Proceeding in the similar manner, we 

can define a sequence {𝑧𝑛} in 𝑋 such that for 𝑛 =
0,1,2,3 … 

 𝑧2𝑛+1  = 𝐽𝑥2𝑛+1 = 𝐴𝐵𝑥2𝑛, 

 𝑧2𝑛  = 𝐼𝑥2𝑛 = 𝑆𝑇𝑥2𝑛−1  … (5) 

 

Now, we shall show that {𝑧𝑛} is a Cauchy sequence.  

Using (2), we have 

𝑑(𝑧2𝑛+1, 𝑧2𝑛+2) = 𝑑(𝐴𝐵𝑥2𝑛, 𝑆𝑇𝑥2𝑛+1) 

 ≤ 𝛽1max  {𝑑(𝐴𝐵𝑥2𝑛, 𝐼𝑥2𝑛), 𝑑(𝑆𝑇𝑥2𝑛+1, 𝐽𝑥2𝑛+1), 

 
1

2
[𝑑(𝐴𝐵𝑥2𝑛, 𝐽𝑥2𝑛+1) + 𝑑(𝑆𝑇𝑥2𝑛+1, 𝐼𝑥2𝑛)], 𝑑(𝐼𝑥2𝑛, 𝐽𝑥2𝑛+1)} 

 +𝛽2max  {𝑑(𝐴𝐵𝑥2𝑛, 𝐼𝑥2𝑛), 𝑑(𝑆𝑇𝑥2𝑛+1, 𝐽𝑥2𝑛+1)} 

 +𝛽3 𝑚𝑎𝑥 {𝑑(𝐴𝐵𝑥2𝑛, 𝐽𝑥2𝑛+1), 𝑑(𝑆𝑇𝑥2𝑛+1, 𝐼𝑥2𝑛)} 

 ≤ 𝛽1max  {𝑑(𝑧2𝑛+1, 𝑧2𝑛), 𝑑(𝑧2𝑛+2, 𝑧2𝑛+1),
1

2
[𝑑(𝑧2𝑛+1, 𝑧2𝑛+1) 
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 +𝑑(𝑧2𝑛+2, 𝑧2𝑛)], 𝑑(𝑧2𝑛, 𝑧2𝑛+1)} 

 +𝛽2max  {𝑑(𝑧2𝑛+1, 𝑧2𝑛), 𝑑(𝑧2𝑛+2, 𝑧2𝑛+1)} 

 +𝛽3 𝑚𝑎𝑥 {𝑑(𝑧2𝑛+1, 𝑧2𝑛+1), 𝑑(𝑧2𝑛+2, 𝑧2𝑛)} 

or,  𝑑(𝑧2𝑛+1, 𝑧2𝑛+2)≤𝛽1max  {𝑑(𝑧2𝑛, 𝑧2𝑛+1), 𝑑(𝑧2𝑛+1, 𝑧2𝑛+2),
1

2
[𝑑(𝑧2𝑛, 𝑧2𝑛+1) 

 +𝑑(𝑧2𝑛+1, 𝑧2𝑛+2)], 𝑑(𝑧2𝑛, 𝑧2𝑛+1)} 

 +𝛽2max  {𝑑(𝑧2𝑛, 𝑧2𝑛+1), 𝑑(𝑧2𝑛+1, 𝑧2𝑛+2)} 

 +𝛽3 𝑚𝑎𝑥 {𝑑(𝑧2𝑛, 𝑧2𝑛+1), 𝑑(𝑧2𝑛+1, 𝑧2𝑛+2)} … (6) 

 

where 0< 𝛽 = 𝛽1 +  𝛽2 + 2𝛽3 < 1.  
In (6), if 𝑑(𝑧2𝑛+1, 𝑧2𝑛+2) >  𝑑(𝑧2𝑛, 𝑧2𝑛+1) for some positive integer n, then we get  

 𝑑(𝑧2𝑛+1, 𝑧2𝑛+2)≤𝛽 𝑑(𝑧2𝑛+1, 𝑧2𝑛+2) 

 

which is a contradiction. Then, we obtain 

 𝑑(𝑧2𝑛+1, 𝑧2𝑛+2)≤𝛽 𝑑(𝑧2𝑛, 𝑧2𝑛+1) 

 

Similarly, we get 

 𝑑(𝑧2𝑛, 𝑧2𝑛+1) = 𝑑(𝐴𝐵𝑥2𝑛, 𝑆𝑇𝑥2𝑛−1) 

 ≤ 𝛽1max  {𝑑(𝐴𝐵𝑥2𝑛, 𝐼𝑥2𝑛), 𝑑(𝑆𝑇𝑥2𝑛−1, 𝐽𝑥2𝑛−1), 

 
1

2
[𝑑(𝐴𝐵𝑥2𝑛, 𝐽𝑥2𝑛−1) + 𝑑(𝑆𝑇𝑥2𝑛−1, 𝐼𝑥2𝑛)], 𝑑(𝐼𝑥2𝑛, 𝐽𝑥2𝑛−1)} 

 +𝛽2max  {𝑑(𝐴𝐵𝑥2𝑛, 𝐼𝑥2𝑛), 𝑑(𝑆𝑇𝑥2𝑛−1, 𝐽𝑥2𝑛−1)} 

 +𝛽3 𝑚𝑎𝑥 {𝑑(𝐴𝐵𝑥2𝑛, 𝐽𝑥2𝑛−1), 𝑑(𝑆𝑇𝑥2𝑛−1, 𝐼𝑥2𝑛)} 

 ≤ 𝛽1max  {𝑑(𝑧2𝑛+1, 𝑧2𝑛), 𝑑(𝑧2𝑛, 𝑧2𝑛−1),
1

2
[𝑑(𝑧2𝑛+1, 𝑧2𝑛−1) 

 +𝑑(𝑧2𝑛, 𝑧2𝑛)], 𝑑(𝑧2𝑛, 𝑧2𝑛−1)} + 𝛽2𝑚𝑎𝑥 {𝑑(𝑧2𝑛+1, 𝑧2𝑛), 
 𝑑(𝑧2𝑛, 𝑧2𝑛−1)} + 𝛽3 𝑚𝑎𝑥 {𝑑(𝑧2𝑛+1, 𝑧2𝑛−1), 𝑑(𝑧2𝑛, 𝑧2𝑛)} 

 ≤𝛽1max  {𝑑(𝑧2𝑛+1, 𝑧2𝑛), 𝑑(𝑧2𝑛, 𝑧2𝑛−1),
1

2
[𝑑(𝑧2𝑛+1, 𝑧2𝑛) 

 +𝑑(𝑧2𝑛, 𝑧2𝑛−1)], 𝑑(𝑧2𝑛, 𝑧2𝑛−1)} + 𝛽2𝑚𝑎𝑥{𝑑(𝑧2𝑛+1, 𝑧2𝑛), 
 𝑑(𝑧2𝑛, 𝑧2𝑛−1)} + 𝛽3 𝑚𝑎𝑥 {𝑑(𝑧2𝑛+1, 𝑧2𝑛), 𝑑(𝑧2𝑛, 𝑧2𝑛−1)}… (7) 

 

In (7), if 𝑑(𝑧2𝑛+1, 𝑧2𝑛) > 𝑑(𝑧2𝑛, 𝑧2𝑛−1),  then we get 

 𝑑(𝑧2𝑛+1, 𝑧2𝑛) ≤ 𝛽𝑑(𝑧2𝑛+1, 𝑧2𝑛), which is a contradiction.  

 

Thus, we get 

 (𝑧2𝑛+1, 𝑧2𝑛) ≤ 𝛽𝑑(𝑧2𝑛, 𝑧2𝑛−1) for 𝑛 = 1,2,3, … 

where 0 < 𝛽 < 1 

 

Now, by induction  

 𝑑(𝑧2𝑛, 𝑧2𝑛+1) ≤ 𝛽 𝑑(𝑧2𝑛−1, 𝑧2𝑛) 

 ⋮ 
 ⋮ 
 ≤ 𝛽𝑛 𝑑(𝑧0, 𝑧1) 

 

Again, for any 𝑚 > 𝑛, we have 

 (𝑧𝑛, 𝑧𝑚) ≤ 𝑑(𝑧𝑛, 𝑧𝑛+1) + 𝑑(𝑧𝑛+1, 𝑧𝑛+2) + …+ 𝑑(𝑧𝑚−1, 𝑧𝑚) 

 ≤ [𝛽𝑛 + 𝛽𝑛+1 + ⋯ + 𝛽𝑚−1]𝑑(𝑧1, 𝑧0) 

 ≤  
𝛽𝑛

1−𝛽
𝑑(𝑧1, 𝑧0) 

 

Using normality of cone, we get 

||𝑑(𝑧𝑛, 𝑧𝑚)|| ≤  
𝛽𝑛

1−𝛽
𝐾 ||𝑑(𝑧1, 𝑧0)|| where 𝐾 is a normal constant.  
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This implies that 𝑑(𝑧𝑛, 𝑧𝑚) → 0 as 𝑛, 𝑚 → ∞ . 
Hence, {𝑧𝑛}defined by (5) is a Cauchy sequence. Since, 𝑋 is complete there exists a point 𝑧 in 𝑋 such that 

lim
𝑛→∞

𝑧𝑛 = 𝑧 i.e.{𝑧𝑛} converges to some 𝑧 ∈ 𝑋. 

 

Therefore, the sequences 

𝑧2𝑛+1 =  𝐴𝐵𝑥2𝑛= 𝐽𝑥2𝑛+1 and  𝑧2𝑛 =  𝑆𝑇𝑥2𝑛−1= 𝐼𝑥2𝑛, 

 

which are subsequences of {𝑧𝑛}  also, converges to a point 𝑧. 
i.e.  lim

𝑛→∞
𝐴𝐵𝑥2𝑛 = lim

𝑛→∞
𝐽𝑥2𝑛+1 = 𝑧 and  

 lim
𝑛→∞

𝑆𝑇𝑥2𝑛−1 = lim
𝑛→∞

𝐼𝑥2𝑛 = 𝑧 

 

Now, let 𝐼 is continuous then the sequences {𝐼2𝑥2𝑛} and {𝐼𝐵𝑥2𝑛} converge to the same point 𝐼𝑧. Since 
{𝐴𝐵, 𝐼}  are compatible on 𝑋, so the sequence {𝐴𝐵𝐼𝑥2𝑛}  also converge to the same point 𝐼𝑧. i.e. 

 𝐼2𝑥2𝑛  → 𝐼𝑧, 𝐴𝐵𝐼𝑥2𝑛 → 𝐼𝑧  as 𝑛 → ∞. 
By (2), we get 

𝑑(𝐴𝐵𝐼𝑥2𝑛 , 𝑆𝑇𝑥2𝑛−1)≤ 𝛽1max  {𝑑(𝐴𝐵𝐼𝑥2𝑛, 𝐼2𝑥2𝑛), 𝑑(𝑆𝑇𝑥2𝑛−1, 𝐽𝑥2𝑛−1), 

  
1

2
[𝑑(𝐴𝐵𝐼𝑥2𝑛, , 𝐽𝑥2𝑛−1) + 𝑑(𝑆𝑇𝑥2𝑛−1, 𝐼2𝑥2𝑛)],  

 𝑑(𝐼2𝑥2𝑛, 𝐽𝑥2𝑛−1)} 

 +𝛽2max  {𝑑(𝐴𝐵𝐼𝑥2𝑛, 𝐼2𝑥2𝑛), 𝑑(𝑆𝑇𝑥2𝑛−1, 𝐽𝑥2𝑛−1)} 

 +𝛽3 𝑚𝑎𝑥 {𝑑(𝐴𝐵𝐼𝑥2𝑛, 𝐽𝑥2𝑛−1), 𝑑(𝑆𝑇𝑥2𝑛−1, 𝐼2𝑥2𝑛)} 

 

Letting n→ ∞,  we have 

𝑑(𝐼𝑧, 𝑧)≤ 𝛽1 max{𝑑(𝐼𝑧, 𝐼𝑧) , 𝑑(𝑧, 𝑧),
1

2
[𝑑(𝐼𝑧, 𝑧) + 𝑑(𝐼𝑧, 𝑧)], 𝑑(𝐼𝑧, 𝑧)} 

 +𝛽2max  {𝑑(𝐼𝑧, 𝐼𝑧), 𝑑(𝑧, 𝑧)} + 𝛽3 max {𝑑(𝐼𝑧, 𝑧), 𝑑(𝑧, 𝐼𝑧)} 

 ≤( 𝛽1  +  𝛽3) 𝑑(𝐼𝑧, 𝑧) 

 

which is a contradiction as  𝛽1 + 𝛽3 < 1, therefore 

 𝑑(𝐼𝑧, 𝑧) = 0 

or, 𝐼𝑧 = 𝑧. 
 

 

Again, by using (2), we get 

𝑑(𝐴𝐵𝑧, 𝑆𝑇𝑥2𝑛−1)≤ 𝛽1 max{𝑑(𝐴𝐵𝑧, 𝐼𝑧) , 𝑑(𝑆𝑇𝑥2𝑛−1, 𝐽𝑥2𝑛−1),
1

2
[𝑑(𝐴𝐵𝑧, 𝐽𝑥2𝑛−1) 

 +𝑑(𝑆𝑇𝑥2𝑛−1 , 𝐼𝑧)], 𝑑(𝐼𝑧, 𝐽𝑥2𝑛−1)} +𝛽2max  {𝑑(𝐴𝐵𝑧, 𝐼𝑧), 𝑑(𝑆𝑇𝑥2𝑛−1, 𝐽𝑥2𝑛−1)}
 +𝛽3 max {𝑑(𝐴𝐵𝑧, 𝐽𝑥2𝑛−1), 𝑑(𝑆𝑇𝑥2𝑛−1, 𝐼𝑧)} 

on letting n→ ∞,  we get  

𝑑(𝐴𝐵𝑧, 𝑧)≤ 𝛽1 max{𝑑(𝐴𝐵𝑧, 𝑧) , 𝑑(𝑧, 𝑧),
1

2
[𝑑(𝐴𝐵𝑧, 𝑧) 

 +𝑑(𝑧, 𝑧)], 𝑑(𝑧, 𝑧)} + 𝛽2max  {𝑑(𝐴𝐵𝑧, 𝑧), 𝑑(𝑧, 𝑧)} 

 +𝛽3 max {𝑑(𝐴𝐵𝑧, 𝑧), 𝑑(𝑧, 𝑧)} 

 ≤ (𝛽1 + 𝛽2 + 𝛽3) 𝑑(𝐴𝐵𝑧, 𝑧) 

which is a contradiction as 𝛽1 +  𝛽2 + 𝛽3 < 1. Therefore, we get  𝐴𝐵𝑧 = 𝑧 . 
 

Since  𝐴𝐵(𝑋) ⊂ 𝐽(𝑋) and 𝑧 is in the range of AB i.e.  𝑧 ∈ 𝐴𝐵(𝑋). Therefore, there exists a point 𝑧′ ∈ 𝑋 

such that 𝑧 = 𝐴𝐵𝑧 = 𝐽𝑧′. 
Now,  

 𝑑(𝑧, 𝑆𝑇𝑧′)= 𝑑(𝐴𝐵𝑧, 𝑆𝑇𝑧′) 

 ≤ 𝛽1 max{𝑑(𝐴𝐵𝑧, 𝐼𝑧) , 𝑑(𝑆𝑇𝑧′, 𝐽𝑧′),
1

2
[𝑑(𝐴𝐵𝑧, 𝐽𝑧′) 
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 +𝑑(𝑆𝑇𝑧′, 𝐼𝑧)], 𝑑(𝐼𝑧, 𝐽𝑧′)} + 𝛽2max  {𝑑(𝐴𝐵𝑧, 𝐼𝑧), 𝑑(𝑆𝑇𝑧′, 𝐽𝑧′)} 

 +𝛽3 max {𝑑(𝐴𝐵𝑧, 𝐽𝑧′), 𝑑(𝑆𝑇𝑧′, 𝐼𝑧)} 

 ≤ 𝛽1 max{𝑑(𝑧, 𝑧) , 𝑑(𝑆𝑇𝑧′, 𝑧),
1

2
[𝑑(𝑧, 𝑧) + 𝑑(𝑆𝑇𝑧′, 𝑧)], 𝑑(𝑧, 𝑧)} 

 +𝛽2 max {𝑑(𝑧, 𝑧), 𝑑(𝑆𝑇𝑧′, 𝑧)} + 𝛽3 max  {𝑑(𝑧, 𝑧), 𝑑(𝑆𝑇𝑧′, 𝑧)} 

or, 𝑑(𝑧, 𝑆𝑇𝑧′) ≤(𝛽1 +  𝛽2 +  𝛽3) 𝑑(𝑆𝑇𝑧′, 𝑧)which is a contradiction as  

𝛽1 +  𝛽2 +  𝛽3 < 1, which gives 𝑧 = 𝑆𝑇𝑧′. Therefore, 𝑧 = 𝑆𝑇𝑧′ = 𝐽𝑧′, which shows that 𝑧′ is a coincidence 

point of ST and J. 

 

Since, ST and J are compatible on 𝑋 and 𝐽𝑧′ = 𝑆𝑇𝑧′ = 𝑧.  Therefore, we have 𝑑(𝐽𝑆𝑇𝑧′, 𝑆𝑇𝐽𝑧′) = 0.  

Hence, 𝐽𝑧 = 𝐽𝑆𝑇𝑧′ = 𝑆𝑇𝐽𝑧′ = 𝑆𝑇𝑧 

or,𝐽𝑧 = 𝑆𝑇𝑧.  

By (2), we get 

 𝑑(𝑧, 𝐽𝑧) = 𝑑(𝐴𝐵𝑧, 𝑆𝑇𝑧) 

 ≤ 𝛽1 max{𝑑(𝐴𝐵𝑧, 𝐼𝑧) , 𝑑(𝑆𝑇𝑧, 𝐽𝑧),
1

2
[𝑑(𝐴𝐵𝑧, 𝐽𝑧) + 𝑑(𝑆𝑇𝑧, 𝐼𝑧)], 𝑑(𝐼𝑧, 𝐽𝑧)} 

 +𝛽2max   {𝑑(𝐴𝐵𝑧, 𝐼𝑧), 𝑑(𝑆𝑇𝑧, 𝐽𝑧)} + 𝛽3 max  {𝑑(𝐴𝐵𝑧, 𝐽𝑧), 𝑑(𝑆𝑇𝑧, 𝐼𝑧)} 

 ≤  𝛽1 max{𝑑(𝑧, 𝑧) , 𝑑(𝐽𝑧, 𝐽𝑧),
1

2
[𝑑(𝑧, 𝐽𝑧) + 𝑑(𝑧, 𝐽𝑧)], 𝑑(𝑧, 𝐽𝑧)} 

 +𝛽2max   {𝑑(𝑧, 𝑧), 𝑑(𝐽𝑧, 𝐽𝑧)} + 𝛽3 max  {𝑑(𝑧, 𝐽𝑧), 𝑑(𝐽𝑧, 𝑧)} 

or,𝑑(𝑧, 𝐽𝑧) ≤ (𝛽1 + 𝛽3 ) 𝑑(𝑧, 𝐽𝑧) a contradiction so that 𝑧 = 𝐽𝑧 = 𝑆𝑇𝑧, which shows that 𝑧 is a common 

fixed point of AB, ST, I and J. 

 

Now, suppose that 𝐴𝐵 is continuous so that the sequences {𝐴𝐵2𝑥2𝑛} and {𝐴𝐵𝐼𝑥2𝑛} converge to 𝐴𝐵𝑧. Since, 
{𝐴𝐵, 𝐼} are compatible on X, it follows that {𝐼𝐴𝐵𝑥2𝑛}also converges to 𝐴𝐵𝑧 i.e. 

𝐴𝐵2𝑥2𝑛 → 𝐴𝐵𝑧, 𝐼𝐴𝐵𝑥2𝑛 → 𝐴𝐵𝑧 as  𝑛 →  ∞.  

By (2), we have  
 𝑑(𝐴𝐵2𝑥2𝑛, 𝑆𝑇𝑥2𝑛−1)≤ 𝛽1 𝑚𝑎𝑥{𝑑(𝐴𝐵2𝑥2𝑛, 𝐼𝐴𝐵𝑥2𝑛) , 𝑑(𝑆𝑇𝑥2𝑛−1, 𝐽𝑥2𝑛−1), 

 
1

2
[𝑑(𝐴𝐵2𝑥2𝑛, 𝐽𝑥2𝑛−1) + 𝑑(𝑆𝑇𝑥2𝑛−1 , 𝐼𝐴𝐵𝑥2𝑛)], 

  𝑑(𝐼𝐴𝐵𝑥2𝑛, 𝐽𝑥2𝑛−1)} 

 +𝛽2 𝑚𝑎𝑥{𝑑(𝐴𝐵2𝑥2𝑛, 𝐼𝐴𝐵𝑥2𝑛), 𝑑(𝑆𝑇𝑥2𝑛−1, 𝐽𝑥2𝑛−1)}
 +𝛽3 𝑚𝑎𝑥 {𝑑(𝐴𝐵2𝑥2𝑛 , 𝐽𝑥2𝑛−1), 𝑑(𝑆𝑇𝑥2𝑛−1, 𝐼𝐴𝐵𝑥2𝑛)} 

 

which on letting 𝑛 → ∞, reduces to  

𝑑(𝐴𝐵𝑧, 𝑧)≤  𝛽1 max{𝑑(𝐴𝐵𝑧, 𝐴𝐵𝑧) , 𝑑(𝑧, 𝑧),
1

2
[𝑑(𝐴𝐵𝑧, 𝑧) + 𝑑(𝐴𝐵𝑧, 𝑧)], 𝑑(𝐴𝐵𝑧, 𝑧)} 

 +𝛽2max   {𝑑(𝐴𝐵𝑧, 𝐴𝐵𝑧), 𝑑(𝑧, 𝑧)} + 𝛽3 max  {𝑑(𝐴𝐵𝑧, 𝑧), 𝑑(𝑧, 𝐴𝐵𝑧)} 

 ≤ (𝛽1 +  𝛽3)𝑑(𝐴𝐵𝑧, 𝑧) 

 

which is a contradiction, yielding thereby 

 𝐴𝐵𝑧 = 𝑧 as 𝛽1 +  𝛽3 < 1. 
 

Since 𝑧 is in the range of 𝐴𝐵 and 𝐴𝐵(𝑋) ⊂ 𝐽(𝑋), there always exists a point 𝑧′  such that 𝐽𝑧′ = 𝑧 = 𝐴𝐵𝑧. 

Then  

𝑑(𝐴𝐵2𝑥2𝑛, 𝑆𝑇𝑧′) ≤ 𝛽1 max{𝑑(𝐴𝐵2𝑥2𝑛, 𝐼𝐴𝐵𝑥2𝑛) , 𝑑(𝑆𝑇𝑧′, 𝐽𝑧′),
1

2
[𝑑(𝐴𝐵2𝑥2𝑛, 𝐽𝑧′) 

 +𝑑(𝑆𝑇𝑧′ , 𝐼𝐴𝐵𝑥2𝑛)], 𝑑(𝐼𝐴𝐵𝑥2𝑛, 𝐽𝑧′)} 

 +𝛽2 max {𝑑(𝐴𝐵2𝑥2𝑛, 𝐼𝐴𝐵𝑥2𝑛), 𝑑(𝑆𝑇𝑧′, 𝐽𝑧′)} 

 +𝛽3 max {𝑑(𝐴𝐵2𝑥2𝑛, 𝐽𝑧′), 𝑑(𝑆𝑇𝑧′, 𝐼𝐴𝐵𝑥2𝑛)} 

 

which on letting 𝑛 → ∞ reduces to 

𝑑(𝑧, 𝑆𝑇𝑧′) ≤ 𝛽1 max{𝑑(𝑧, 𝑧) , 𝑑(𝑆𝑇𝑧′, 𝑧),
1

2
[𝑑(𝑧, 𝑧) + 𝑑(𝑆𝑇𝑧′, 𝑧)], 𝑑(𝑧, 𝑧)} 

 +𝛽2max   {𝑑(𝑧, 𝑧), 𝑑(𝑆𝑇𝑧′, 𝑧)} + 𝛽3 max  {𝑑(𝑧, 𝑧), 𝑑(𝑆𝑇𝑧′, 𝑧)} 
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 ≤ (𝛽1 +  𝛽2 +  𝛽3)𝑑(𝑆𝑇𝑧′, 𝑧), a contradiction which yields 

  𝑧 = 𝑆𝑇𝑧′ = 𝐽𝑧′.  
 

Thus, the pair (𝑆𝑇, 𝐽) has a coincidence point 𝑧′.  

Since, the pair (𝑆𝑇, 𝐽) is compatible on X and  𝐽𝑧′ = 𝑆𝑇𝑧′ = 𝑧,  we have  𝑑(𝐽𝑆𝑇𝑧′, 𝑆𝑇𝐽𝑧′) = 0  [by def.of 

compatible].  

Hence,   𝐽𝑧 = 𝐽(𝑆𝑇𝑧′) = 𝑆𝑇(𝐽𝑧′) = 𝑆𝑇𝑧, which shows that  𝑆𝑇𝑧 = 𝐽𝑧. 

Further, by (2), we have d(𝐴𝐵𝑥2𝑛, 𝑆𝑇𝑧) ≤  𝛽1 𝑚𝑎𝑥{𝑑(𝐴𝐵𝑥2𝑛, 𝐼𝑥2𝑛) , 𝑑(𝑆𝑇𝑧, 𝐽𝑧),
1

2
[𝑑(𝐴𝐵𝑥2𝑛, 𝐽𝑧) 

 +𝑑(𝑆𝑇𝑧 , 𝐼𝑥2𝑛)], 𝑑(𝐼𝑥2𝑛, 𝐽𝑧)} 

 +𝛽2 𝑚𝑎𝑥{𝑑(𝐴𝐵𝑥2𝑛, 𝐼𝑥2𝑛), 𝑑(𝑆𝑇𝑧, 𝐽𝑧)} 

 +𝛽3 𝑚𝑎𝑥{𝑑(𝐴𝐵𝑥2𝑛, 𝐽𝑧), 𝑑(𝑆𝑇𝑧, 𝐼𝑥2𝑛)} 

 

which on letting 𝑛 → ∞, we get 

𝑑(𝑧, 𝑆𝑇𝑧) ≤ 𝛽1 max{𝑑(𝑧, 𝑧) , 𝑑(𝑆𝑇𝑧, 𝑆𝑇𝑧),
1

2
[𝑑(𝑧, 𝑆𝑇𝑧) + 𝑑(𝑆𝑇𝑧, 𝑧)], 𝑑(𝑧, 𝑆𝑇𝑧)} 

 +𝛽2max   {𝑑(𝑧, 𝑧), 𝑑(𝑆𝑇𝑧, 𝑆𝑇𝑧)} + 𝛽3 max  {𝑑(𝑧, 𝑆𝑇𝑧), 𝑑(𝑆𝑇𝑧, 𝑧)} 

 ≤ ( 𝛽1 + 𝛽3) 𝑑(𝑧, 𝑆𝑇𝑧), a contradiction  

 

which implies that 𝑆𝑇𝑧 = 𝑧 = 𝐽𝑧 as 𝛽1 + 𝛽3<1 

Since, 𝑆𝑇(𝑋) ⊂ 𝐼(𝑋) and 𝑆𝑇𝑧 = 𝑧, then there exists a point 𝑧′′ in 𝑋 such that 𝐼𝑧′′ = 𝑧. Thus, 

𝑑(𝐴𝐵𝑧′′, 𝑧) = 𝑑(𝐴𝐵𝑧′′, 𝑆𝑇𝑧) 

 ≤ 𝛽1 𝑚𝑎𝑥{𝑑(𝐴𝐵𝑧′′, 𝐼𝑧") , 𝑑(𝑆𝑇𝑧, 𝐽𝑧),
1

2
[𝑑(𝐴𝐵𝑧′′, 𝐽𝑧) 

 +𝑑(𝑆𝑇𝑧, 𝐼𝑧′′)], 𝑑(𝐼𝑧′′, 𝐽𝑧)} 

 +𝛽2max {𝑑(𝐴𝐵𝑧′′, 𝐼𝑧′′), 𝑑(𝑆𝑇𝑧, 𝐽𝑧)} 

 +𝛽3 max {𝑑(𝐴𝐵𝑧′′, 𝐽𝑧), 𝑑(𝑆𝑇𝑧, 𝐼𝑧′′)} 

 ≤ 𝛽1 max{𝑑(𝐴𝐵𝑧′′, 𝑧) , 𝑑(𝑧, 𝑧),
1

2
[𝑑(𝐴𝐵𝑧′′, 𝑧) + 𝑑(𝑧, 𝑧)], 𝑑(𝑧, 𝑧)} 

 +𝛽2max   {𝑑(𝐴𝐵𝑧′′, 𝑧), 𝑑(𝑧, 𝑧)} + 𝛽3 max  {𝑑(𝐴𝐵𝑧′′, 𝑧), 𝑑(𝑧, 𝑧)} 

or,𝑑(𝐴𝐵𝑧′′, 𝑧) ≤ (𝛽1 + 𝛽2 + 𝛽3) 𝑑(𝐴𝐵𝑧′′, 𝑧), a contradiction which implies that 

𝐴𝐵𝑧′′ = 𝑧 as  𝛽1 + 𝛽2 + 𝛽3 < 1. 
 

Again, since (𝐴𝐵, 𝐼) are compatible on 𝑋 and 𝐴𝐵𝑧′′ = 𝐼𝑧′′ = 𝑧, we have 

 𝑑(𝐼𝐴𝐵𝑧′′, 𝐴𝐵𝐼𝑧′′) = 0.  

 

Therefore, 𝐼𝑧 = 𝐼(𝐴𝐵𝑧′′) = 𝐴𝐵(𝐼𝑧′′) = 𝐴𝐵𝑧.  

 

Hence, 𝐴𝐵𝑧 = 𝐼𝑧 = 𝑧. Thus, we have proved that 

𝑧 is a common fixed point of AB, ST, I and J.  

Instead of AB or I, if the mappings ST or J is 

continuous, then the proof that 𝑧 is a common 

fixed point of AB, ST, I and J is similar. 

 

To show that 𝑧 is unique, let u be another fixed point of AB, ST, I and J. Then 

𝑑(𝑧, 𝑢) = 𝑑(𝐴𝐵𝑧, 𝑆𝑇𝑢) 

 ≤ 𝛽1 max{𝑑(𝐴𝐵𝑧, 𝐼𝑧) , 𝑑(𝑆𝑇𝑢, 𝐽𝑢),
1

2
[𝑑(𝐴𝐵𝑧, 𝐽𝑢) + 𝑑(𝑆𝑇𝑢, 𝐼𝑧)], 𝑑(𝐼𝑧, 𝐽𝑢)} 

 +𝛽2max   {𝑑(𝐴𝐵𝑧, 𝐼𝑧), 𝑑(𝑆𝑇𝑢, 𝐽𝑢)} + 𝛽3 max  {𝑑(𝐴𝐵𝑧, 𝐽𝑢), 𝑑(𝑆𝑇𝑢, 𝐼𝑧)} 

 ≤ 𝛽1 max{𝑑(𝑧, 𝑧) , 𝑑(𝑢, 𝑢),
1

2
[𝑑(𝑧, 𝑢) + 𝑑(𝑢, 𝑧)], 𝑑(𝑧, 𝑢)} 

 +𝛽2max   {𝑑(𝑧, 𝑧), 𝑑(𝑢, 𝑢)} + 𝛽3 max  {𝑑(𝑧, 𝑢), 𝑑(𝑢, 𝑧)} 

or,𝑑(𝑧, 𝑢) ≤  (𝛽1 + 𝛽3) 𝑑(𝑧, 𝑢),  a contradiction yielding thereby 

𝑧 = 𝑢 as  𝛽1 + 𝛽3 < 1. 
 

Finally, we will prove that 𝑧 is also a common 

fixed point of A, B, S, T, I and J. Let both the 

pairs (AB,I) and (ST,J) have a unique common 

fixed point 𝑧. Then 
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Az = A(ABz) = A(BAz) = AB(Az) 

Az = A(Iz) = I(Az)  

Bz = B(ABz) = B(A(Bz)) = BA(Bz)= AB(Bz) 

Bz = B(Iz) = I(Bz)  

which implies that (AB,I) has common fixed 

points which are Az and Bz. We get, thereby Az = 

z = Bz = Jz = ABz, by virtue of uniqueness of 

common fixed point of pair (AB, I).  

 

Similarly, using the commutativity of (S,T), (S,J) 

and (T, J), Sz = z = Tz = Jz = STz can be shown.  

 

Now, we claim that Az = Sz (Bz = Tz), a common fixed point of both the pairs (AB,I) and (ST,J). We have  

 d(Az, Sz) = d(A(ABz), S(STz)) 

 = d(A(BAz), S(TSz)) 

 = d(AB(Az), ST(Sz)) 

 ≤ 𝛽1 max{𝑑(𝐴𝐵(𝐴𝑧), 𝐼(𝐴𝑧)), 𝑑(𝑆𝑇(𝑆𝑧), 𝐽(𝑆𝑧)),
1

2
[𝑑(𝐴𝐵(𝐴𝑧), 𝐽(𝑆𝑧)) 

 +𝑑(𝑆𝑇(𝑆𝑧), 𝐽(𝐴𝑧))], 𝑑(𝐼(𝐴𝑧), 𝐽(𝑆𝑧))} 

 +𝛽2max   {𝑑(𝐴𝐵(𝐴𝑧), 𝐼(𝐴𝑧)), 𝑑(𝑆𝑇(𝑆𝑧), 𝐽(𝑆𝑧))} 

 +𝛽3 max  {𝑑(𝐴𝐵(𝐴𝑧), 𝐽(𝑆𝑧)), 𝑑(𝑆𝑇(𝑆𝑧), 𝐼(𝐴𝑧))} 

 ≤ 𝛽1 max{𝑑(𝐴𝑧, 𝐴𝑧) , 𝑑(𝑆𝑧, 𝑆𝑧),
1

2
[𝑑(𝐴𝑧, 𝑆𝑧) + 𝑑(𝑆𝑧, 𝐴𝑧)], 𝑑(𝐴𝑧, 𝑆𝑧)} 

 +𝛽2max   {𝑑(𝐴𝑧, 𝐴𝑧), 𝑑(𝑆𝑧, 𝑆𝑧))} + 𝛽3 max  {𝑑(𝐴𝑧, 𝑆𝑧), 𝑑(𝑆𝑧, 𝐴𝑧)} 

or,𝑑(𝐴𝑧, 𝑆𝑧) ≤ (𝛽1 + 𝛽3) 𝑑(𝐴𝑧, 𝑆𝑧), a contradiction which implies that 𝐴𝑧 =  𝑆𝑧. 

Similarly, Bz = Tz can be shown. Thus, z is the unique common fixed point of A, B, S, T, I and J. 

The following corollary follows immediately from our theorem (3.1). 

 

Corollary 3.2: Let (𝑋, 𝑑) be a complete cone metric space and P be a normal cone with normal constant K. 

Let A, B, S, T, I and J be self mappings from a complete cone metric space (𝑋, 𝑑) into itself satisfying the 

following conditions: 

(i) 𝐴𝐵(𝑋) ⊂ 𝐽(𝑋),  𝑆𝑇(𝑋) ⊂ 𝐼(𝑋)  

(ii) 𝑑(𝐴𝐵𝑥, 𝑆𝑇𝑦)≤𝛽1 max{𝑑(𝐴𝐵𝑥, 𝐼𝑥) , 𝑑(𝑆𝑇𝑦, 𝐽𝑦),
1

2
𝑑(𝐴𝐵𝑥, 𝐽𝑦), 

 
1

2
𝑑(𝑆𝑇𝑦, 𝐼𝑥), 𝑑(𝐼𝑥, 𝐽𝑦)} + 𝛽2 𝑚𝑎𝑥 {𝑑(𝐴𝐵𝑥, 𝐼𝑥), 𝑑(𝑆𝑇𝑦, 𝐽𝑦)} + 𝛽3 max {𝑑(𝐴𝐵𝑥, 𝐽𝑦), 𝑑(𝑆𝑇𝑦, 𝐼𝑥)} 

 

for all 𝑥, 𝑦 ∈ 𝑋 where 𝛽1, 𝛽2, 𝛽3 ≥ 0, 𝛽1 + 𝛽2 +  2𝛽3 ≤ 1(𝛽1, 𝛽2, 𝛽3 are non-negative real numbers) 

Suppose that 

(iii) One of AB, ST, I and J is continuous.  

(iv) The pairs (AB, I) and (ST,J) are compatible on X.   

Then the mappings AB, ST, I and J have a unique common fixed point in X. 

 

Furthermore, if the pairs (A,B), (A,I), (B,I), (S,T), (S,J), (T,J) are commuting mappings then the mappings A, 

B, S, T, I and J have unique common fixed point. 

If we put AB = A, ST = B in theorem (3.1), we get the following, which generalize the result of Jang et al. [7] 

in cone metric spaces. 

 

Corollary 3.3:Let (𝑋, 𝑑) be a complete cone metric space and 𝑃 be a normal cone with normal constant 𝐾. 

Let A, B, S and T be self mappings from a complete cone metric space (𝑋, 𝑑) into  itself satisfying the 

conditions: 

(i) 𝐴(𝑋) ⊂ 𝑇(𝑋), 𝐵(𝑋) ⊂ 𝑆(𝑋) 

(ii) 𝑑(𝐴𝑥, 𝐵𝑦) ≤𝛽1 max{𝑑(𝐴𝑥, 𝑆𝑥) , 𝑑(𝐵𝑦, 𝑇𝑦),
1

2
[𝑑(𝐴𝑥, 𝑇𝑦) + 𝑑(𝐵𝑦, 𝑆𝑥)], 𝑑(𝑆𝑥, 𝑇𝑦)} +

𝛽2max   {𝑑(𝐴𝑥, 𝑆𝑥), 𝑑(𝐵𝑦, 𝑇𝑦)} + 𝛽3 max {𝑑(𝐴𝑥, 𝑇𝑦), 𝑑(𝐵𝑦, 𝑆𝑥)} 

 

For all 𝑥, 𝑦 ∈X, where  0 < 𝛽 = 𝛽1 + 𝛽2 + 2𝛽3 < 1  (𝛽1, 𝛽2 , 𝛽3  are non-negative real numbers).  

(iii) Suppose that one of A, B, S and T is continuous.  

(iv) The pairs (𝐴, 𝑆)and (𝐵, 𝑇) are compatible on X then A, B, S and T have a unique common fixed point in 

X.  
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Taking AB=A, ST=B, 𝛽2 = 0 in theorem (3.1), we obtain the following, which generalize the result of Cho-

Yoo [3] in cone metric spaces. 

 

Corollary 3.4: Let (𝑋, 𝑑) be a complete cone metric space and 𝑃 be a normal cone with normal constant 𝐾. 

Let A, B, S and T be mappings from a complete cone metric space (𝑋, 𝑑) into  itself satisfying the 

conditions: 

(i) 𝐴(𝑋) ⊂ 𝑇(𝑋), 𝐵(𝑋) ⊂ 𝑆(𝑋) 

(ii) 𝑑(𝐴𝑥, 𝐵𝑦) ≤𝛽1 max{𝑑(𝐴𝑥, 𝑆𝑥) , 𝑑(𝐵𝑦, 𝑇𝑦),
1

2
[𝑑(𝐴𝑥, 𝑇𝑦) + 𝑑(𝐵𝑦, 𝑆𝑥)], 𝑑(𝑆𝑥, 𝑇𝑦)} 

 +𝛽3 max {𝑑(𝐴𝑥, 𝑇𝑦), 𝑑(𝐵𝑦, 𝑆𝑥)} 

 

For all 𝑥, 𝑦 ∈X, where  0 < 𝛽 = 𝛽1 + 2𝛽3 < 1  (𝛽1, 𝛽3  are non-negative real numbers).  

(iii) Suppose that one of A, B, S and T is continuous.  

(iv) The pairs (𝐴, 𝑆)and (𝐵, 𝑇) are compatible on X then A, B, S and T have a unique common fixed point in 

X.  

 

If we put AB=A, ST=B, 𝛽2 = 0 and 𝛽3 = 0  in theorem (3.1), we obtain the following, which improve and 

generalize the result of Kang-Kim [13] and Jungck [11] in cone metric spaces. 

 

Corollary 3.5: Let (𝑋, 𝑑) be a complete cone metric space and 𝑃 be a normal cone with normal constant 𝐾. 

Let A, B, S and T be mappings from a complete cone metric space (𝑋, 𝑑) into  itself satisfying the 

conditions: 

(i) 𝐴(𝑋) ⊂ 𝑇(𝑋), 𝐵(𝑋) ⊂ 𝑆(𝑋) 

(ii) 𝑑(𝐴𝑥, 𝐵𝑦) ≤𝛽1 max{𝑑(𝐴𝑥, 𝑆𝑥) , 𝑑(𝐵𝑦, 𝑇𝑦),
1

2
[𝑑(𝐴𝑥, 𝑇𝑦) + 𝑑(𝐵𝑦, 𝑆𝑥)], 𝑑(𝑆𝑥, 𝑇𝑦)} 

 

For all 𝑥, 𝑦 ∈X, where  0 < 𝛽1 < 1  (𝛽1 is non-negative real number).  

(iii) Suppose that one of A, B, S and T is continuous. 

(iv) The pairs (𝐴, 𝑆)and (𝐵, 𝑇) are compatible on X then A, B, S and T have a unique common fixed point in 

X.  

 

Example 3.6: Consider 𝑋 = [0,1] with the usual metric defined by  

 𝑑(𝑥, 𝑦) = ‖𝑥 − 𝑦‖ = |𝑥 − 𝑦| and 𝐹 = 𝑅 = Real Banach space. 

 

Define self mappings A, B, S, T, I and J by 

 𝐴𝑥 =
2𝑥

3
,   𝐵𝑥 =

3𝑥

4
,   𝑆𝑥 =

𝑥

4
,   𝑇𝑥 =

4𝑥

5
,    𝐼𝑥 =

𝑥

4
 and 𝐽𝑥 =

3𝑥

4
 for all 𝑥 ∈ 𝑋, respectively. 

 

Then, all the hypothesis oftheorem (3.1) are satisfied for 

𝛽1 =
1

5
, 𝛽2 =

1

3
 and 𝛽3 =

1

20
 where 𝛽1 + 𝛽2 + 2𝛽3 < 1. Hence, 0 is a unique common fixed point of A, B, S, 

T, I and J. 

 

Now, we give some examples to illustrate our corollary (3.3).  

 

Example 3.7: Let 𝑋 = [0, ∞) with the usual metric defined by 𝑑(𝑥, 𝑦) = ‖𝑥−𝑦‖ = |𝑥 − 𝑦| and 𝐸 = 𝑅 = 

Real Benach space. 

Define self mappings A, B, S, T : 𝑋 → 𝑋 by 

𝐴𝑥 = 𝐵𝑥 =
1

8
𝑥 + 1, 𝑆𝑥 = 𝑇𝑥 =

1

2
𝑥 + 1 for all 𝑥 ∈ 𝑋, respectively. 

Now, we get 

 𝑑(𝐴𝑥, 𝐴𝑦) =
1

4
𝑑(𝑆𝑥, 𝑆𝑦) 

 ≤
1

4
𝑚𝑎𝑥{𝑑(𝐴𝑥, 𝑆𝑥), 𝑑(𝐴𝑦, 𝑆𝑦),

1

2
[𝑑(𝐴𝑥, 𝑆𝑦) + 𝑑(𝐴𝑦, 𝑆𝑥)], 𝑑(𝑆𝑥, 𝑆𝑦)} 
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 +𝛽2𝑚𝑎𝑥{𝑑(𝐴𝑥, 𝑆𝑥), 𝑑(𝐴𝑦, 𝑆𝑦)} + 𝛽3𝑚𝑎𝑥{𝑑(𝐴𝑥, 𝑆𝑦), 𝑑(𝐴𝑦, 𝑆𝑥)} 

For all 𝑥, 𝑦 ∈ 𝑋, where 0 ≤ 𝛽2 + 2𝛽3 <
3

4
. Here, all the conditions of the corollary (3.3) are satisfied except 

the condition of compatibility of the pair (𝐴, 𝑆). Therefore, 𝐴 and 𝑆 don’t have a common fixed point in 𝑋.  

 

Example 3.8: Let 𝑋 = [0,1] with the usual metric defined by  

 𝑑(𝑥, 𝑦) = ‖𝑥−𝑦‖ = |𝑥 − 𝑦| and 𝐸 = 𝑅 = Real Benach space. 

 Define A, B, S and  T: 𝑋 → 𝑋 by 

𝐴𝑥 = 0, 𝐵𝑥 = {

1

4
 𝑖𝑓 𝑥 =

1

2
1

4
𝑥 𝑖𝑓 𝑥 ≠

1

2

 , 𝑆𝑥 = 𝑥,  𝑇𝑥 = {
1 𝑖𝑓 𝑥 =

1

2

𝑥 𝑖𝑓 𝑥 ≠
1

2

 

for all 𝑥 ∈ 𝑋 respectively. We get 

 𝑑(𝐴𝑥, 𝐵𝑦) = {

1

4
=

1

3
𝑑(𝐵𝑦, 𝑇𝑦) 𝑖𝑓 𝑦 =

1

2
1

4
𝑦 =

1

3
𝑑(𝐵𝑦, 𝑇𝑦) 𝑖𝑓 𝑦 ≠

1

2

 

 ≤
1

3
𝑚𝑎𝑥{𝑑(𝐴𝑥, 𝑆𝑥), 𝑑(𝐵𝑦, 𝑇𝑦),

1

2
[𝑑(𝐴𝑥, 𝑇𝑦) + 𝑑(𝐵𝑦, 𝑆𝑥)], 𝑑(𝑆𝑥, 𝑇𝑦)} 

 +𝑞 𝑚𝑎𝑥{𝑑(𝐴𝑥, 𝑆𝑥), 𝑑(𝐵𝑦, 𝑇𝑦)} + 𝑟 𝑚𝑎𝑥{𝑑(𝐴𝑥, 𝑇𝑦), 𝑑(𝐵𝑦, 𝑆𝑥)} 

For all 𝑥, 𝑦 ∈ 𝑋, where 0 ≤ 𝛽2 + 2𝛽3 <
2

3
.  

 

Therefore, all the conditions of corollary (3.3) are 

satisfied. Consequently, 0 is a unique common 

fixed point of A, B, S and T. 
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